# ENERGY SAVINGS FROM AIR SEALING COMMERCIAL BUILDINGS

### 2016 Energy Design Conference

#### **Dave Bohac P.E.**

**Director of Research** 



# Continuing Education Credit Information

• In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

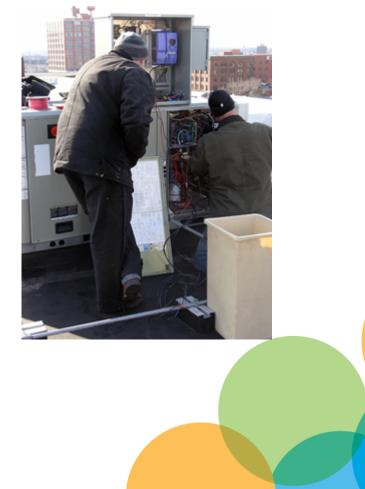
"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.



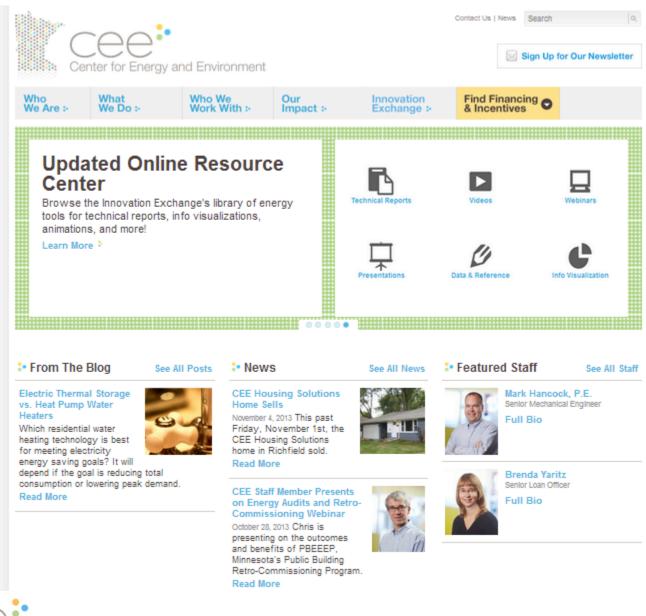
## **Acknowledgements**

This project was supported in part by a grant from the Minnesota Department of Commerce, Division of Energy Resources through a Conservation Applied Research and Development (CARD) program






# • What we do


- Program Design and Delivery
- Lending Center
- Engineering Services
- Public Policy
- Innovation Exchange
  - Research
  - Education and Outreach







Pg. 4





# Project Team

- Center for Energy and Environment
  - Jim Fitzgerald
  - Martha Hewett
  - Andrew Lutz
  - Kirk Kholehma
- Air Barrier Solutions
  - Larry Harmon
- The Energy Conservatory
  - Gary Nelson
  - Paul Morin
  - Peter Burns

Air Leakage Test Staff: CEE - Alex Haynor, Jerry Kimmen, Joel Lafontaine, Dan May, Erik Moe, Tom Prebich, and Isaac Smith

Bruce Stahlberg of Affordable Energy Solutions



# **Large Building Tightness Specification**

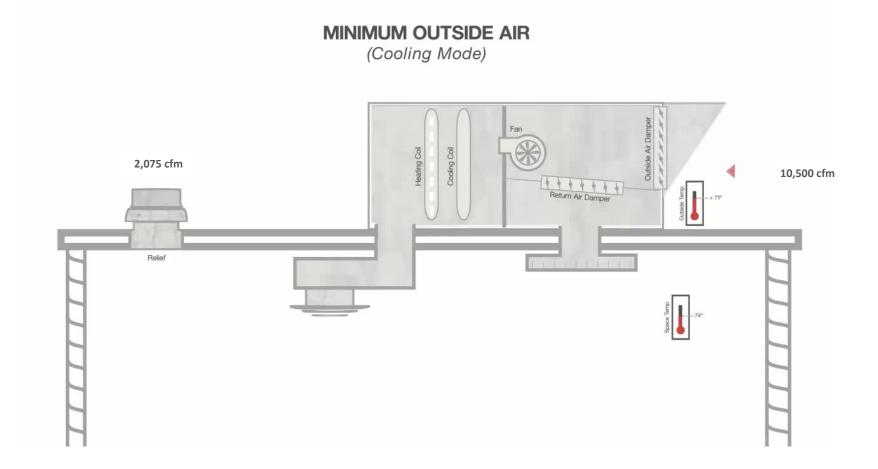
- Measure the air flow rate needed to pressurize & depressurize the building by 75Pa (0.3 in. wc.)
- Divide by the building envelope area typically the exterior walls + roof + floor (6 sides)
- Results from 387 US C&I buildings
  - $\circ$  Average = 0.72 cfm/ft<sup>2</sup>
  - $\circ$  Range 0.03 4.3 cfm/ft<sup>2</sup>



# **Code Requirements**

- US Army Corp Engineers = 0.25 cfm/ft<sup>2</sup>
  - Tested over 300 buildings
  - $\circ$  Average = 0.16 cfm/ft<sup>2</sup>
- IECC 2012 (7 states) whole building compliance path = 0.40 cfm/ft<sup>2</sup>
- <u>Washington State</u>: Buildings over five stories require a whole building test, but do not have to pass a prescribed value.
- <u>City of Seattle</u>: All buildings require a whole building test, but do not have to pass a prescribed value.

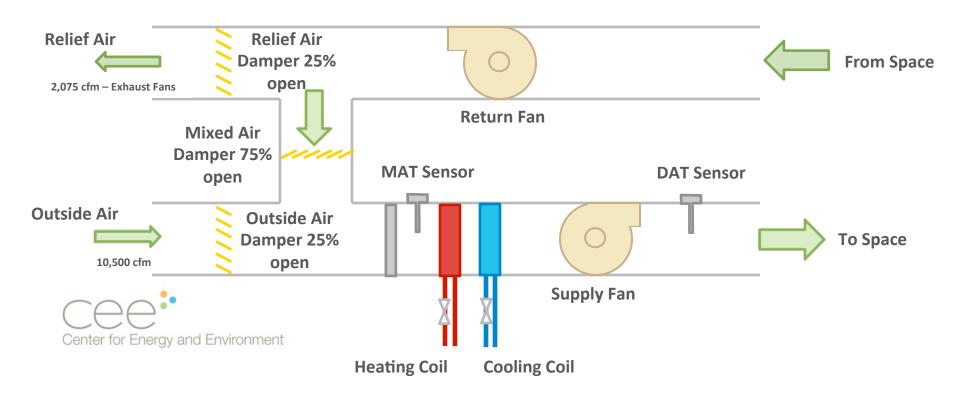



# Why do we care about building air leakage?

- HVAC systems pressurize buildings to eliminate infiltration don't they?
- When HVAC is off => air infiltration
- Pressurization not always effective or implemented correctly
- NIST/Persily tracer gas results infiltration can be significant



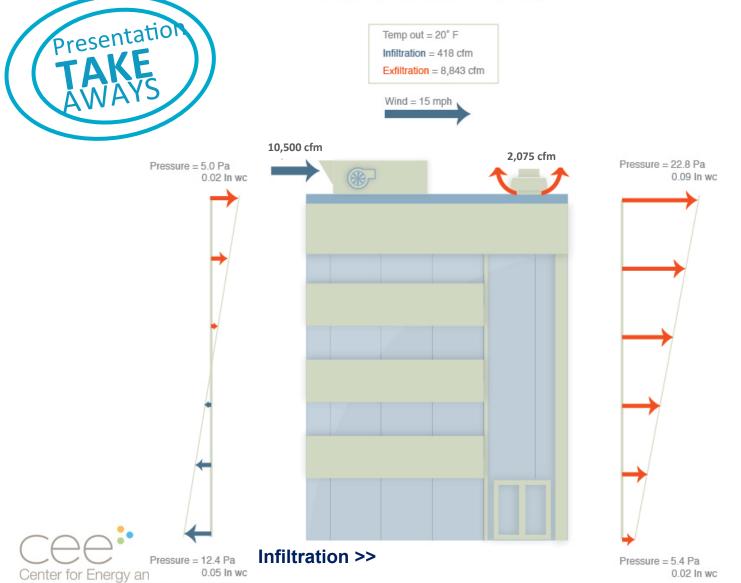



# **Roof Top Unit Operation**

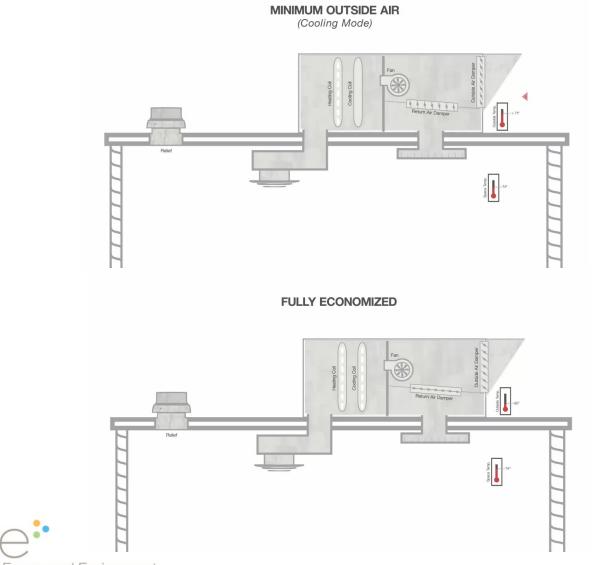




# Single-zone Constant Volume AHU


- Supply and Return Fans turn on/off by schedule
- Outside Air Damper has a minimum position setpoint for ventilation
- Relief Damper controls air exhausted from the building

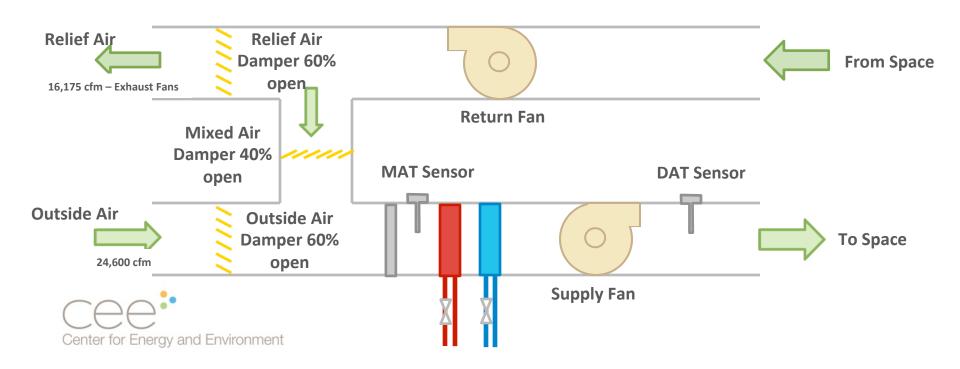



#### **COLD WEATHER - HVAC OFF** COLD WEATHER - HVAC ON Temp out = 20° F Temp out = 20° F Infiltration = 2,350 cfm Infiltration = 0 cfm Exfiltration = 2,350 cfm Exfiltration = 8,425 cfm 10,500 cfm Pressure = 5.0 Pa Pressure = 18.4 Pa 2,075 cfm 0.02 In wc 0.08 In wc NO WIND Pressure = 12.4 Pa NO WIND Pressure = 1.0 Pa 0.05 In wc 0.01 In wc

#### COLD WEATHER - HVAC OFF **COLDER WEATHER - HVAC ON** Temp out = 20° F Temp out = 0° F Infiltration = 2,350 cfm Infiltration = 292 cfm Exfiltration = 2,350 cfm Exfiltration = 8,717 cfm 10,500 cfm Pressure = 5.0 Pa Pressure = 24.7 Pa 2,075 cfm 0.02 In wc 0.10 In wc NO WIND Pressure = 12.4 Pa NO WIND Pressure = - 3.6 Pa 0.05 In wc - 0.01 In wc

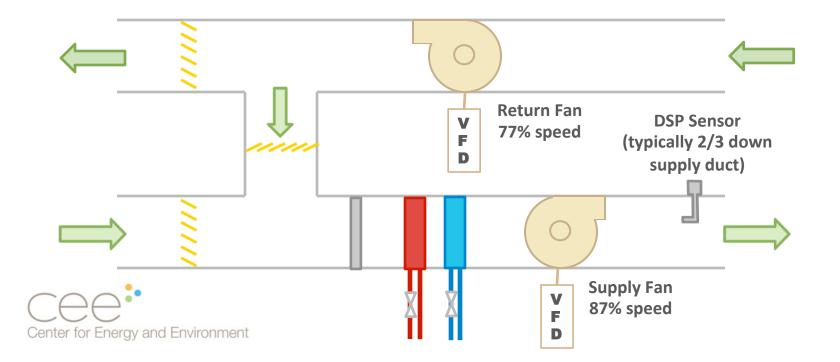
COLD WEATHER - HVAC ON

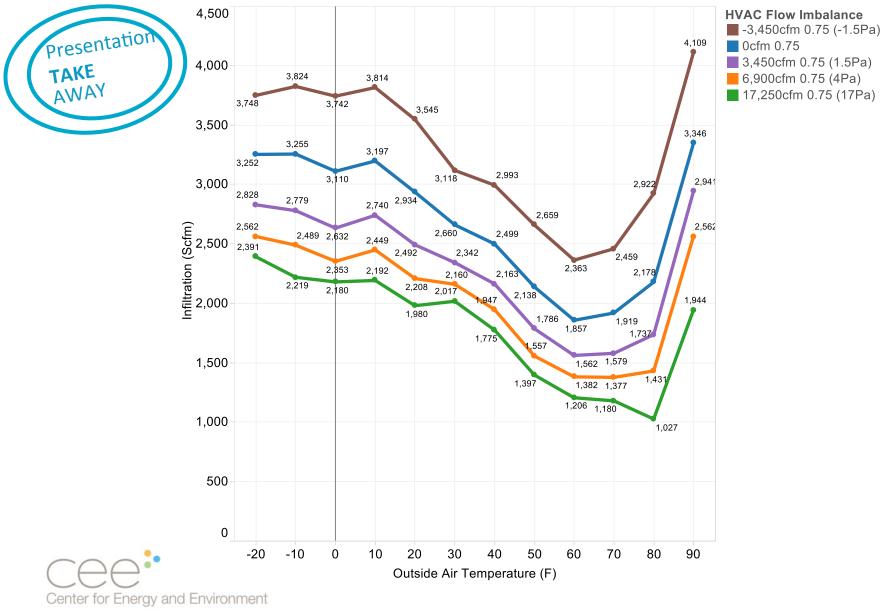



# **Roof Top Unit Operation**

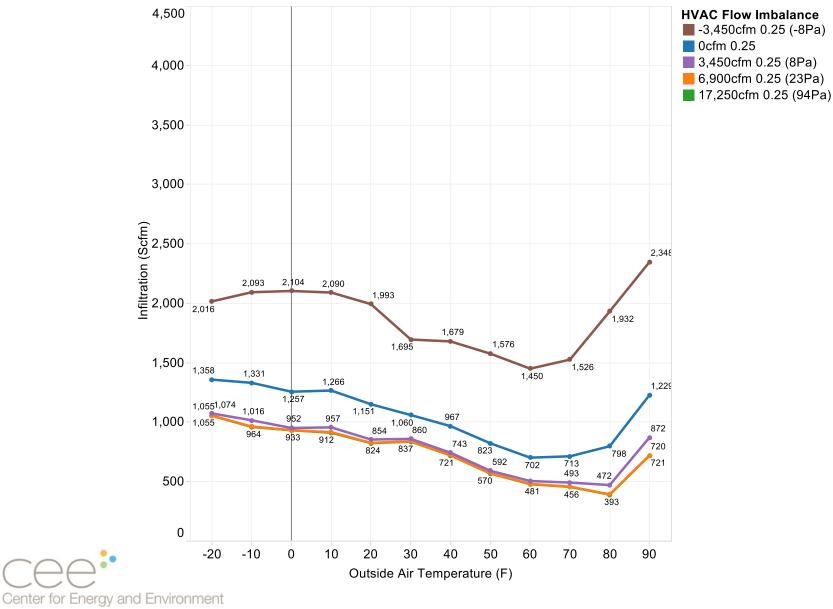


Center for Energy and Environment


# Single-zone Constant Volume AHU


- Economizer operation
  - Mild weather when building needs cooling
  - Open outdoor air dampers, exhaust dampers follow;
    OA EA stays the same?




# Variable Volume AHU with VAV Boxes

- Supply and Return Fans
  - Supply fan VFD modulates to meet Duct Static Pressure (DSP) Setpoint
  - Return fan lags supply fan to maintain positive pressure





1 Story 60,560 ft<sup>2</sup> Elementary School: leakage = 44,670 cfm@75Pa (0.75cfm@75/ft<sup>2</sup>)



1 Story 60,560ft<sup>2</sup> Elementary School: leakage =  $14,890 \text{ cfm}@75\text{Pa} (0.25\text{cfm}@75/\text{ft}^2)$ 

Envelope Leakage= 0.75 cfm@75Pa/ft<sup>2</sup>

|                       | HVAC Flow Imbalance, OA - EA (cfm) |         |         |         |         |  |  |
|-----------------------|------------------------------------|---------|---------|---------|---------|--|--|
|                       | -3,450                             | 0       | 3,450   | 6,900   | 17,250  |  |  |
| Avg Infil. (cfm)      | 2,986                              | 2,444   | 2,077   | 1,849   | 1,652   |  |  |
| Avg Infil. (ach)      | 0.25                               | 0.20    | 0.17    | 0.15    | 0.14    |  |  |
| Heat Load (therms/yr) | 7,264                              | 6,114   | 5,260   | 4,732   | 4,308   |  |  |
| % Space Heating       | 19%                                | 16%     | 14%     | 12%     | 11%     |  |  |
| Cost (\$)             | \$4,213                            | \$3,546 | \$3,051 | \$2,745 | \$2,499 |  |  |



Envelope Leakage= 0.75 cfm@75Pa/ft<sup>2</sup>

|                       | HVAC Flow Imbalance, OA - EA (cfm) |         |         |         |         |  |  |
|-----------------------|------------------------------------|---------|---------|---------|---------|--|--|
|                       | -3,450                             | 0       | 3,450   | 6,900   | 17,250  |  |  |
| Avg Infil. (cfm)      | 2,986                              | 2,444   | 2,077   | 1,849   | 1,652   |  |  |
| Avg Infil. (ach)      | 0.25                               | 0.20    | 0.17    | 0.15    | 0.14    |  |  |
| Heat Load (therms/yr) | 7,264                              | 6,114   | 5,260   | 4,732   | 4,308   |  |  |
| % Space Heating       | 19%                                | 16%     | 14%     | 12%     | 11%     |  |  |
| Cost (\$)             | \$4,213                            | \$3,546 | \$3,051 | \$2,745 | \$2,499 |  |  |

#### Envelope Leakage= 0.25 cfm@75Pa/ft<sup>2</sup>

|                       | HVAC Flow Imbalance, OA - EA (cfm) |         |         |         |         |  |  |
|-----------------------|------------------------------------|---------|---------|---------|---------|--|--|
|                       | -3,450                             | 0       | 3,450   | 6,900   | 17,250  |  |  |
| Avg Infil. (cfm)      | 1,725                              | 951     | 708     | 678     | 676     |  |  |
| Avg Infil. (ach)      | 0.14                               | 0.08    | 0.06    | 0.06    | 0.06    |  |  |
| Heat Load (therms/yr) | 4,004                              | 2,439   | 1,875   | 1,813   | 1,809   |  |  |
| % Space Heating       | 10%                                | 6%      | 5%      | 5%      | 5%      |  |  |
| Cost (\$)             | \$2,322                            | \$1,414 | \$1,087 | \$1,052 | \$1,049 |  |  |

# What about Energy Recovery Ventilators?

- Why not run the exhaust air through an ERV to recovery some of that energy instead of forcing it out through the envelope?
- Need a tighter envelope to accomplish ERVs with infiltration control



# erom secruoser ygrene esu ot srenvo se in US office buil 1 Center for Energy and Environment

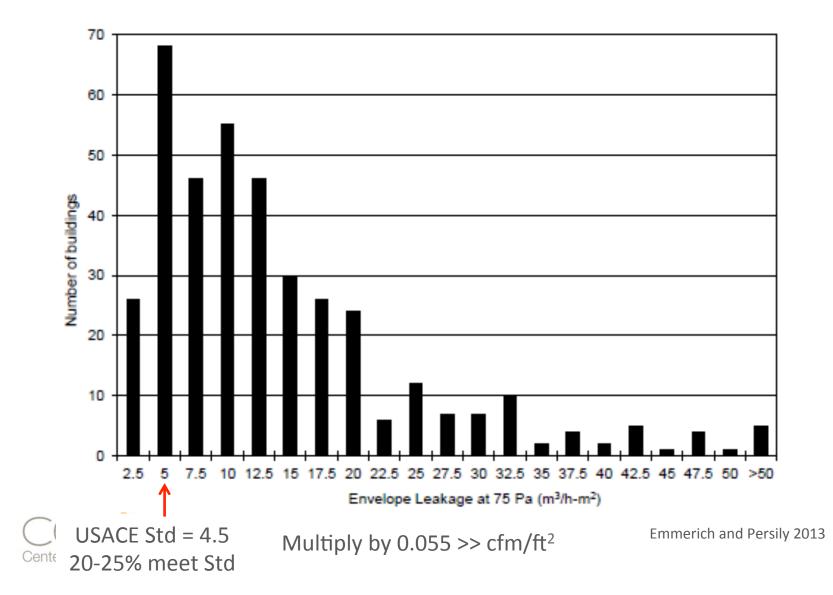
Center for Energy and Environment

# How leaky or tight are US buildings?

- Test results compiled by the National Institute of Standards and Technology (NIST) – Emmerich and Persily – over the past 15 years
- 387 commercial and institutional buildings
- NOT RANDOM: researchers, low-energy programs, private testing firms
- Used to model air infiltration energy loads and help establish leakage standards



# **NIST Results from US whole building tests**


|     | 6-sided at 75Pa (cfm/ft <sup>2</sup> ) |                                       |                                                                  |                                                                                         |  |  |
|-----|----------------------------------------|---------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Qty | Mean                                   | Std Dev                               | Min                                                              | Max                                                                                     |  |  |
| 36  | 0.35                                   | 0.38                                  | 0.03                                                             | 1.78                                                                                    |  |  |
| 16  | 0.29                                   | 0.20                                  | 0.06                                                             | 0.75                                                                                    |  |  |
| 18  | 0.40                                   | 0.15                                  | 0.11                                                             | 0.64                                                                                    |  |  |
| 79  | 0.54                                   | 0.40                                  | 0.05                                                             | 1.73                                                                                    |  |  |
| 10  | 0.30                                   | 0.23                                  | 0.09                                                             | 0.75                                                                                    |  |  |
| 159 | 0.36                                   | 0.30                                  | 0.03                                                             | 1.78                                                                                    |  |  |
|     | 36<br>16<br>18<br>79<br>10             | QtyMean360.35160.29180.40790.54100.30 | QtyMeanStd Dev360.350.38160.290.20180.400.15790.540.40100.300.23 | QtyMeanStd DevMin360.350.380.03160.290.200.06180.400.150.11790.540.400.05100.300.230.09 |  |  |

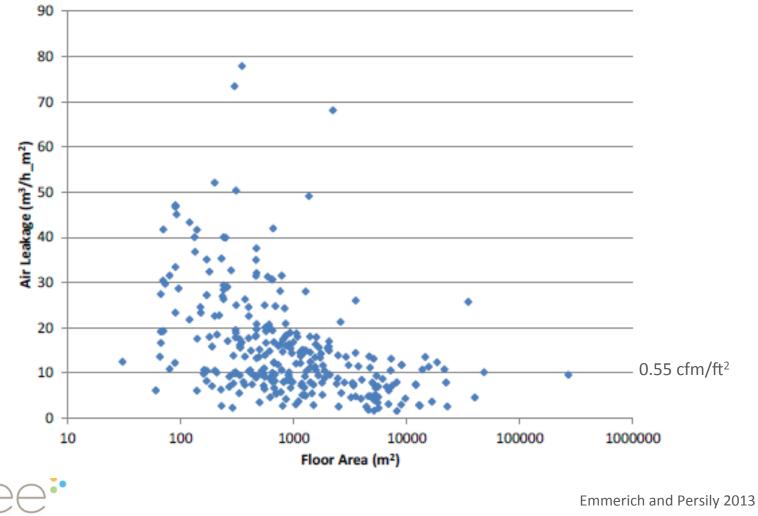
| All previous data 228 0.92 0.70 | 0.09 | 4.28 |
|---------------------------------|------|------|
|---------------------------------|------|------|

| All Buildings             | 387 | 0.72 | 0.63     | 0.03     | 4.28 |  |  |  |
|---------------------------|-----|------|----------|----------|------|--|--|--|
|                           |     | _    | ~        |          |      |  |  |  |
| USACE & Navy              | 300 | 0.16 | USACE St | d = 0.25 |      |  |  |  |
| Emmerich and Persily 2013 |     |      |          |          |      |  |  |  |

Center for Energy and Environment

# **NIST Results: Frequency Histogram**

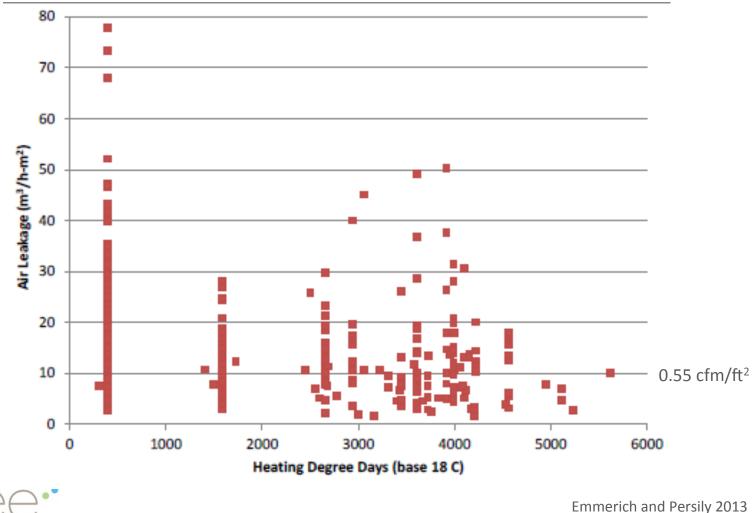



# **NIST Results: Weak Trends**

- Tighter office, education, public assembly & long-term health care
- Leakier retail, restaurants, industrial
- Leakier exterior walls frame, masonry/ metal, & frame/masonry



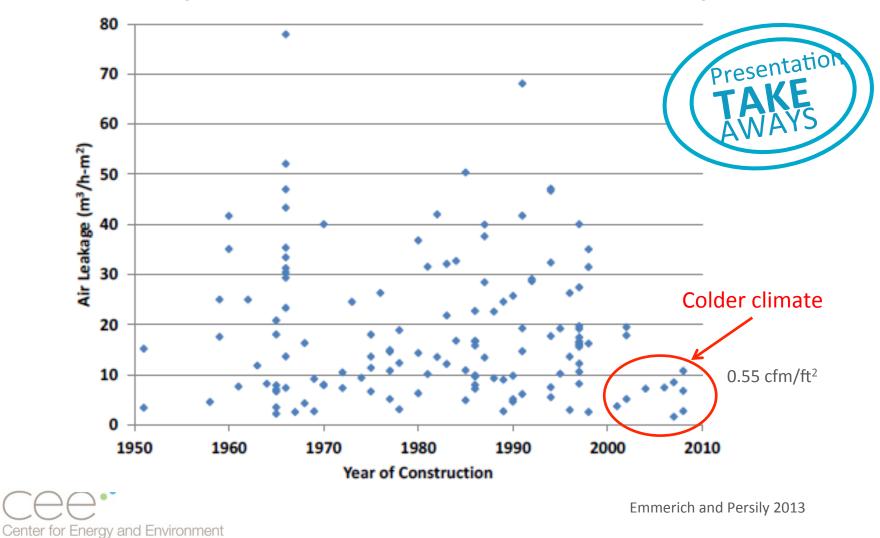
# **NIST Results: Effect of Building Size**


#### Buildings > 54,000ft<sup>2</sup> twice as tight



Center for Energy and Environment

## **NIST Results: Effect of Climate**


Heating degree days > 3,600 one third tighter



Center for Energy and Environment

# **NIST Results: Effect of Age**

138 buildings with no air barriers built since 1950 - no strong trend



# **NIST Results: LEED Buildings**

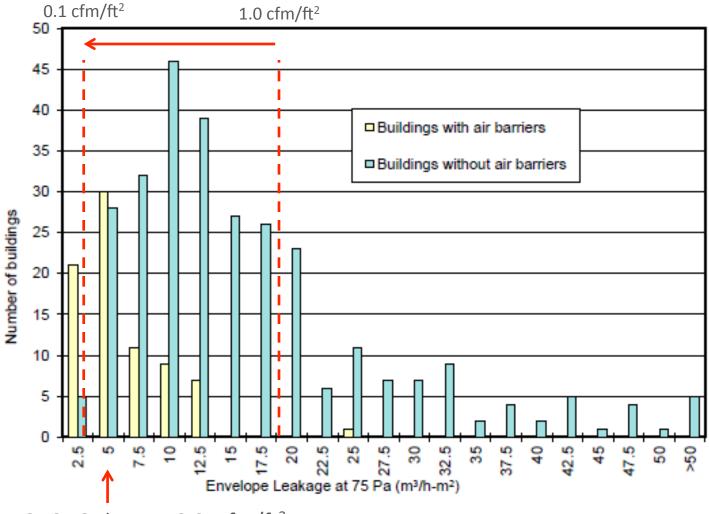
- 23 LEED buildings; average = 0.29 cfm/ft<sup>2</sup>
- Significantly tighter than average of other 364 buildings
- Slightly (5%) leakier than other 56 buildings with an air barrier



# **NIST Results: Effect of Air Barrier**

#### Buildings with air barrier are 70% tighter




USACE Std = 4.5, 0.25 cfm/ft<sup>2</sup>

Emmerich and Persily 2013

Page 33

# **NIST Results: Effect of Air Barrier**

#### Compare no air barrier to tight construction



USACE Std =  $4.5, 0.25 cfm/ft^2$ 

Page 34

Emmerich and Persily 2013

# **NIST Building Infiltration & Energy Models**

- Multizone infiltration and energy model
- Compared air infiltration and energy use for:
  - "typical" no air barrier reported leakage (4x USACE)
  - "target" good practice (40% below USACE)
- Five cities in different climate zones

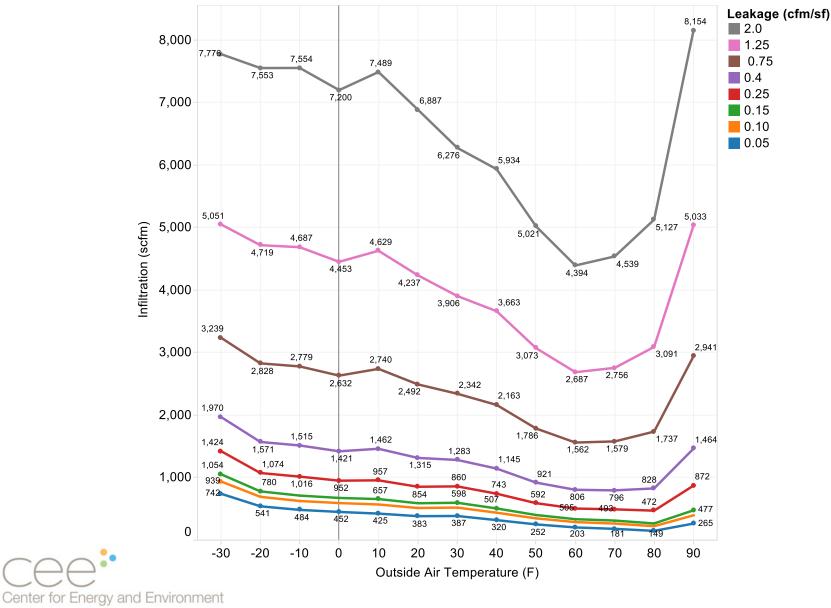


# **NIST Building Infiltration & Energy Models**

|             |                                                                   | -    |         |     |                    |     |               |
|-------------|-------------------------------------------------------------------|------|---------|-----|--------------------|-----|---------------|
| City        | Annual Average Infiltration (h <sup>-1</sup> )<br>Baseline Target |      |         |     | Electrical Savings |     | Total Savings |
| Bismarck    | 0.22                                                              | 0.05 | \$1,854 | 42% | \$1,340            | 26% | \$3,195       |
| Minneapolis | 0.23                                                              | 0.05 | \$1,872 | 43% | \$1,811            | 33% | \$3,683       |
| St. Louis   | 0.26                                                              | 0.04 | \$1,460 | 57% | \$1,555            | 28% | \$3,016       |
| Phoenix     | 0.17                                                              | 0.02 | \$124   | 77% | \$620              | 9%  | \$745         |
| Miami       | 0.26                                                              | 0.03 | \$0     | 0%  | \$769              | 10% | \$769         |

Two-Story, 24,000ft<sup>2</sup> Office Building

g


ţ.

One-Story, 12,000ft<sup>2</sup> Retail Building

| City        | Annual Average<br>Baseline | rage Infiltration (h <sup>-1</sup> )<br>Target |         | avings | Electrical | Savings | Total Savings |
|-------------|----------------------------|------------------------------------------------|---------|--------|------------|---------|---------------|
| Bismarck    | 0.20                       | 0.02                                           | \$1,835 | 26%    | \$33       | 2 %     | \$1,869       |
| Minneapolis | 0.22                       | 0.02                                           | \$1,908 | 28 %   | \$364      | 18 %    | \$2,272       |
| St. Louis   | 0.24                       | 0.01                                           | \$1,450 | 38 %   | \$298      | 9 %     | \$1,748       |
| Phoenix     | 0.13                       | 0.00                                           | \$176   | 64 %   | \$992      | 14 %    | \$1,169       |
| Miami       | 0.21                       | 0.01                                           | \$6     | 98 %   | \$1,224    | 14 %    | \$1,231       |

Emmerich and Persily 2013

### Model Infiltration: Range of Envelope Leakage



1 Story 60,560ft<sup>2</sup> Elementary School: HVAC Imbalance = 3,450 cfm

### Model Infiltration: Range of Envelope Leakage

|                       | Building Envelope Leakage (cfm@75/ft <sup>2</sup> ) |       |       |         |         |         |         |         |
|-----------------------|-----------------------------------------------------|-------|-------|---------|---------|---------|---------|---------|
|                       | 0.05                                                | 0.1   | 0.15  | 0.25    | 0.4     | 0.75    | 1.25    | 2       |
| Avg Infil. (cfm)      | 305                                                 | 417   | 481   | 708     | 1,094   | 2,077   | 3,539   | 5,751   |
| Avg Infil. (ach)      | 0.03                                                | 0.03  | 0.04  | 0.06    | 0.09    | 0.17    | 0.29    | 0.47    |
| Heat Load (therms/yr) | 855                                                 | 1,139 | 1,305 | 1,875   | 2,832   | 5,260   | 8,867   | 14,322  |
| % Space Heating       | 2%                                                  | 3%    | 3%    | 5%      | 7%      | 14%     | 23%     | 37%     |
| Cost (\$)             | \$496                                               | \$661 | \$757 | \$1,087 | \$1,643 | \$3,051 | \$5,143 | \$8,306 |

1 Story 60,560ft<sup>2</sup> Elementary School: HVAC Imbalance = 3,450 cfm

NIST office building model:  $1.0 \text{ cfm/ft}^2 = 0.23 \text{ ach}$  $0.1 \text{cfm/ft}^2 = 0.05 \text{ ach}$ 



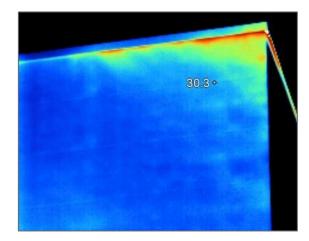
### **ASHRAE Research: selection criteria**

- Goal: 24 to 36 existing mid- and high-rise buildings (16 Completed)
- Non-residential
- 4 stories or higher
- Sustainability certification (14 of 16)
- Built after the year 2000
- Climate zones 2-7 (All 6 Zones Represented)



### **ASHRAE Research Project: leakage results**

- Average = 0.29 cfm/ft<sup>2</sup>
- Green building = 0.32 cfm/ft<sup>2</sup>; others = 0.22 cfm/ft<sup>2</sup>
- Air barrier specified and envelope expert = 0.13 cfm/ ft<sup>2</sup>; others = 0.39 cfm/ft<sup>2</sup>
- Unsealing HVAC penetrations increased leakage by average of 27% with range of 2% to 51%




### **ASHRAE Research Project: leakage sites**

- Roof/wall intersection
- Soffits and overhangs
- Mechanical rooms, garages, basements, loading docks
- Roll-up and overhead doors









### Minnesota Leakage Study: work scope

- Conduct investigations on 25 buildings: floor area of 25,000 to 500,000 ft<sup>2</sup>
- Air seal and pre/post leakage tests on X 7 buildings
- Continuous building pressure and HVAC operation data for 50 to 200 days
- CONTAM pre/post air flow models that include mechanical system leakage and pressure effects
- Compute infiltration/energy reductions



### **Building Characteristics**

|                | Floor     | #       | Constr |                                        |
|----------------|-----------|---------|--------|----------------------------------------|
| Building ID    | Area (sf) | Stories | Year   | Wall Type                              |
| Elem School TF | 59,558    | 1       | 1951   | Masonry & corrugated metal panel       |
| Middle School  | 138,887   | 3       | 1936   | Cast concrete w/CMU infill             |
| Small Office   | 26,927    | 1       | 1998   | EFIS tip up (3 walls) and CMU block    |
| Univ Library   | 246,365   | 3       | 1967   | Cast concrete w/CMU infill & brick ext |
| Elem School PS | 60,968    | 1       | 1965   | CMU w/brick exterior                   |
| Library/Office | 55,407    | 1       | 2007   | Steel studs & brick or stone cladding  |





University Library 246,000sf





Small Office 27,000sf

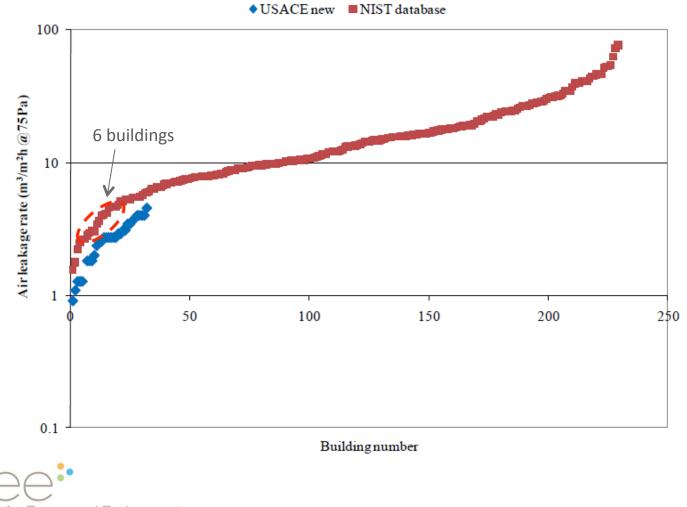




Library/Office 55,000sf

3 elementary & middle schools: 1936 to 1965 with additions 60,000 – 139,000sf

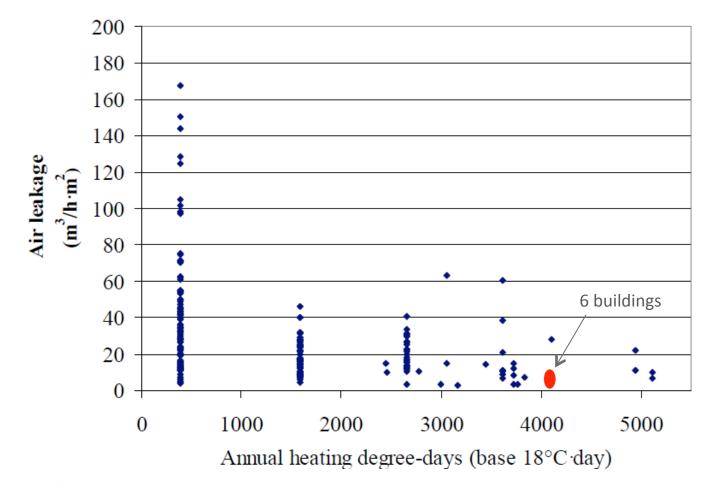
### Minnesota Leakage Study: leakage results


All 7 buildings at least 25% tighter than the US Army Corp standard of 0.25 cfm/ft<sup>2</sup>

|                |                         | Envelope             | Air Leaka | ge at 75Pa   |                   |         |        |
|----------------|-------------------------|----------------------|-----------|--------------|-------------------|---------|--------|
|                | Floor                   | Area $(ft^2)$        |           | 6 Sides      | EqLA              | #       | Constr |
| Building ID    | Area (ft <sup>2</sup> ) | 6 Sides <sup>2</sup> | (cfm)     | $(cfm/ft^2)$ | $(\mathrm{ft}^2)$ | Stories | Year   |
| Elem School TF | 59,558                  | 146,977              | 27,425    | 0.19         | 15.2              | 1       | 1951   |
| Comm. College  | 95,000                  | 164,844              | 28,881    | 0.18         | 17.2              | 2       | 1996   |
| Middle School  | 138,887                 | 208,733              | 32,818    | 0.16         | 16.6              | 3       | 1936   |
| Small Office   | 26,927                  | 65,267               | 9,177     | 0.14         | 4.6               | 1       | 1998   |
| Univ Library   | 246,365                 | 171,712              | 23,356    | 0.14         | 13.1              | 3       | 1967   |
| Elem School PS | 60,968                  | 145,766              | 17,602    | 0.12         | 9.6               | 1       | 1965   |
| Library/Office | 55,407                  | 139,965              | 12,321    | 0.09         | 6.9               | 1       | 2007   |
| Minimum        | 26,927                  | 65,267               | 9,177     | 0.09         | 4.6               |         |        |
| Mean           | 97,587                  | 149,038              | 21,654    | 0.14         | 11.9              |         |        |
| Median         | 60,968                  | 146,977              | 23,356    | 0.14         | 13.1              |         |        |
| Maximum        | 246,365                 | 208,733              | 32,818    | 0.19         | 17.2              |         |        |

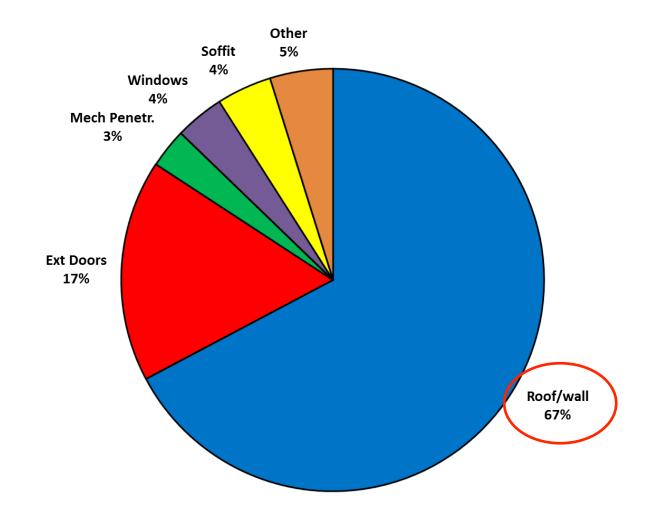


### **Comparison to US Buildings**


7 building average is 85% less than the US average, slightly less than US Army Corp average

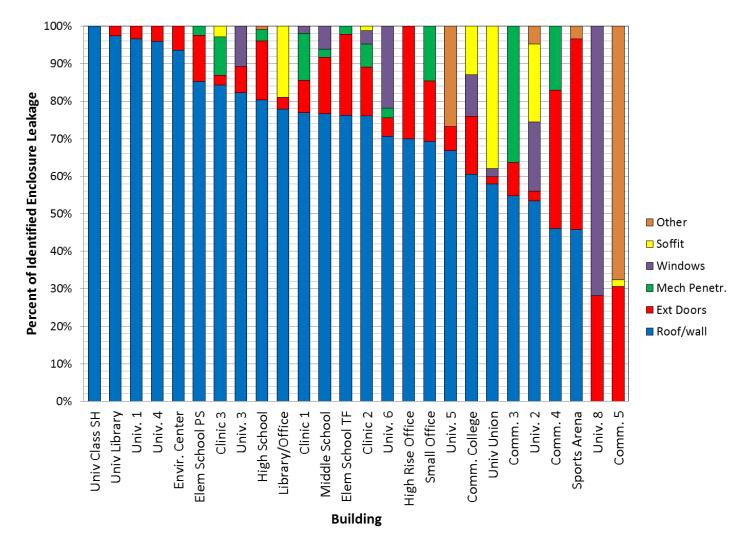


Center for Energy and Environment


### **Tighter Buildings in Colder Climates?**

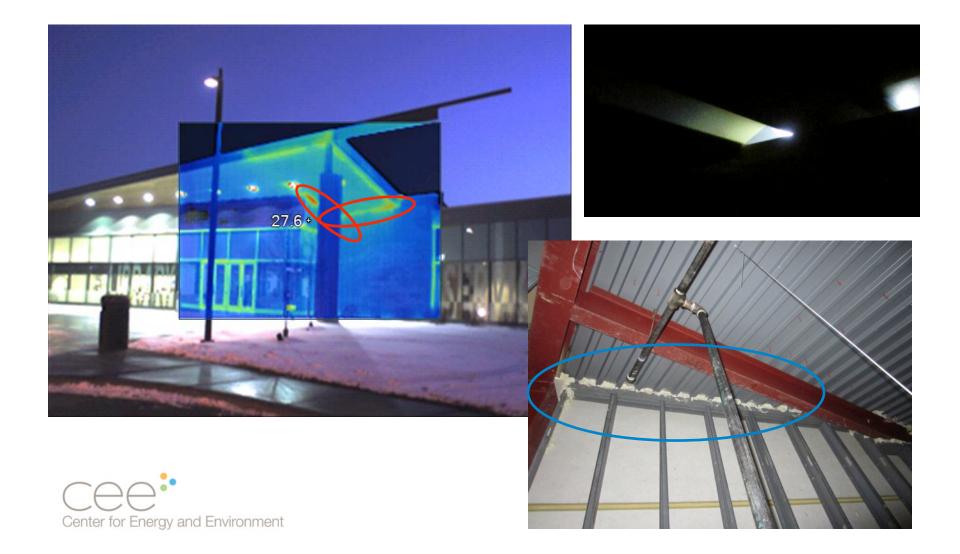
#### 7 building average is 85% less than the US average




Center for Energy and Environment

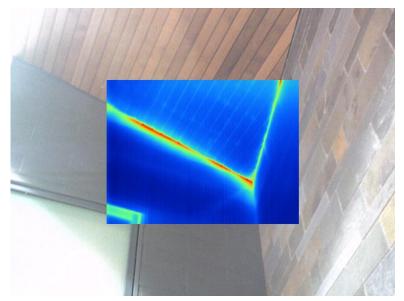
### Where Were the Leaks?



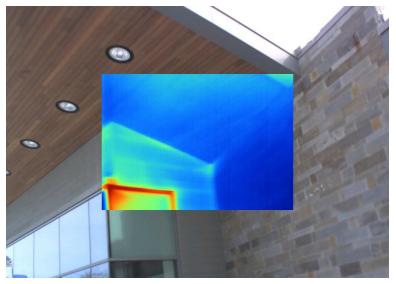



### Where Were the Leaks?




### Air Sealing Focused on Roof/wall

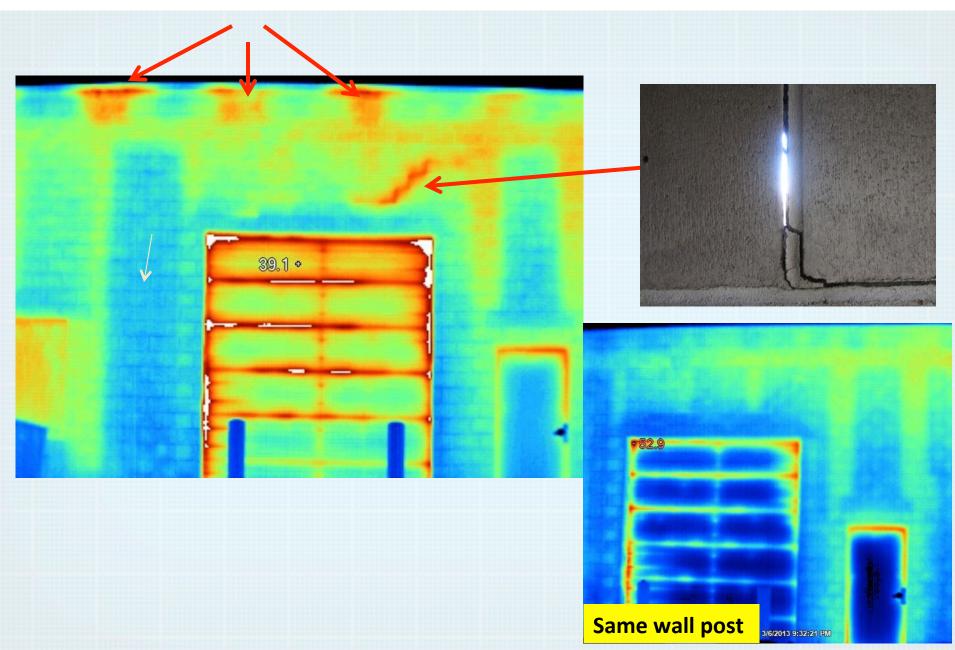
Canopy leakage at exterior wall




### Air Sealing Focused on Roof/wall

#### Canopy leakage at exterior wall




**IR Before** 





**IR After** 

### Where to look: IR view of rear CMU wall pre



## Look inside: 10 beam pockets



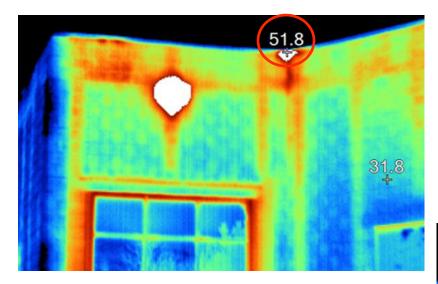


**Smoke shows airflow** 

### Closed cell foam fill, don't create fire hazard






See ICC ES 3228 approvals. maintain exhaust on work space adj. to occupied office Sample MDI < 5ppb Manage exposure



34 cu ft foam block max temp rise check for building official and owner before injection.

Don't start a fire

### **Beam Pockets**



**IR Before** 







### **Air Sealing Reduction**

### "Tight" buildings tightened by 9%

| •              |              |                     |        |       |       |  |  |
|----------------|--------------|---------------------|--------|-------|-------|--|--|
|                | Leakage at   | Air Leakage at 75Pa |        |       |       |  |  |
|                | 6 Sides      | (cfi                | m)     | Reduc | ction |  |  |
| Building ID    | $(cfm/ft^2)$ | Pre                 | Post   | (cfm) | (%)   |  |  |
| Elem School TF | 0.19         | 27,425              | 22,699 | 4,726 | 17%   |  |  |
| Comm. College  | 0.18         | 28,881              | 28,133 | 748   | 3%    |  |  |
| Middle School  | 0.16         | 32,818              | 28,872 | 3,947 | 12%   |  |  |
| Small Office   | 0.14         | 9,177               | 8,470  | 708   | 8%    |  |  |
| Univ Library   | 0.14         | 23,356              | 21,963 | 1,392 | 6%    |  |  |
| Elem School PS | 0.12         | 17,602              | 15,837 | 1,765 | 10%   |  |  |
| Library/Office | 0.09         | 12,321              | 11,369 | 953   | 8%    |  |  |
| Minimum        | 0.09         | 9,177               | 8,470  | 708   | 3%    |  |  |
| Mean           | 0.14         | 21,654              | 19,620 | 2,034 | 9%    |  |  |
| Median         | 0.14         | 23,356              | 21,963 | 1,392 | 8%    |  |  |
| Maximum        | 0.19         | 32,818              | 28,872 | 4,726 | 17%   |  |  |



Center for Energy and Environment

Air sealing work confirmed by visual, smoke puffer, and IR inspections

### **Air Sealing Reduction**

More expensive to seal tighter buildings?

|                | Air Sealing Cost |       |        |            |  |  |  |  |
|----------------|------------------|-------|--------|------------|--|--|--|--|
| Building ID    | Total            | (\$/0 | CFM75) | $({ft}^2)$ |  |  |  |  |
| Elem School TF | \$ 18,550        | \$    | 3.92   | \$ 6,822   |  |  |  |  |
| Comm. College  | \$ 17,845        | \$    | 23.86  | \$ 17,273  |  |  |  |  |
| Middle School  | \$ 23,700        | \$    | 6.00   | \$ 8,434   |  |  |  |  |
| Small Office   | \$ 4,768         | \$    | 6.73   | \$ 10,058  |  |  |  |  |
| Univ Library   | \$ 15,918        | \$    | 11.43  | \$ 65,159  |  |  |  |  |
| Elem School PS | \$ 26,700        | \$    | 15.13  | \$ 38,132  |  |  |  |  |
| Library/Office | \$ 1,152         | \$    | 1.21   | \$ 1,297   |  |  |  |  |
| Median         | \$ 17,845        | \$    | 6.73   | \$ 10,058  |  |  |  |  |





Cost per sq ft of sealing

### **Air Sealing Reduction**

#### Contractor estimates better for leakier buildings?

|                | Leakage Area |                              |                                |     | Sealed Area (sf) |       |          |  |
|----------------|--------------|------------------------------|--------------------------------|-----|------------------|-------|----------|--|
|                | EqLA         | $\Lambda$ (ft <sup>2</sup> ) | (ft <sup>2</sup> ) Reduction C |     | Contractor       |       |          |  |
| Building ID    | Pre          | Post                         | $(\mathrm{ft}^2)$              | (%) | Roof/Wall        | Total | Meas/Est |  |
| Elem School TF | 15.2         | 12.5                         | 2.7                            | 18% | 8.84             | 11.49 | 0.31     |  |
| Comm. College  | 17.2         | 16.2                         | 1.0                            | 6%  | 5.47             | 5.47  | 0.19     |  |
| Middle School  | 16.6         | 13.8                         | 2.8                            | 17% | 11.73            | 14.98 | 0.24     |  |
| Small Office   | 4.6          | 4.1                          | 0.5                            | 10% |                  |       |          |  |
| Univ Library   | 13.1         | 12.8                         | 0.2                            | 2%  |                  |       |          |  |
| Elem School PS | 9.6          | 8.9                          | 0.7                            | 7%  | 14.45            | 16.94 | 0.05     |  |
| Library/Office | 6.9          | 6.0                          | 0.9                            | 13% |                  | 1     |          |  |



### **Building Leakage < Estimated sealing**



### **Air Sealing Energy Savings**

#### **Modeled Infiltration and Energy Savings**

|                | Space Heat Gas Use (Therms/yr) |              |             |  |  |  |  |  |
|----------------|--------------------------------|--------------|-------------|--|--|--|--|--|
| Building ID    | Total                          | Infiltration | Infil/Total |  |  |  |  |  |
| Elem School TF | 40,224                         | 2,389        | 6%          |  |  |  |  |  |
| Comm. College  | 32,095                         | 3,402        | 11%         |  |  |  |  |  |
| Middle School  | 44,469                         | 7,779        | 17%         |  |  |  |  |  |
| Small Office   |                                | 684          |             |  |  |  |  |  |
| Univ Library   |                                | 192          |             |  |  |  |  |  |
| Elem School PS | 26,563                         | 2,387        | 9%          |  |  |  |  |  |
| Library/Office | 18,108                         | 2,829        | 16%         |  |  |  |  |  |
| Minimum        |                                |              | 6%          |  |  |  |  |  |
| Mean           |                                |              | 12%         |  |  |  |  |  |
| Median         |                                |              | 11%         |  |  |  |  |  |
| Maximum        |                                |              | 17%         |  |  |  |  |  |



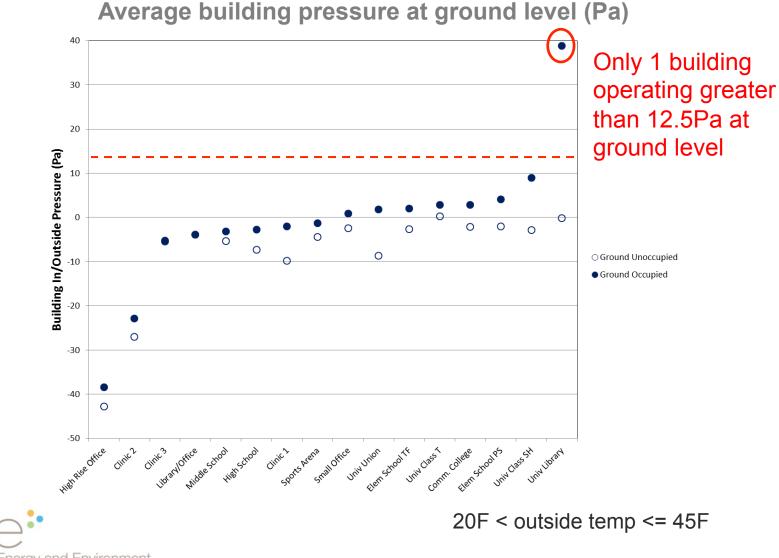
### **Air Sealing Energy Savings**

#### Modeled Infiltration and Energy Savings

|                | Space Hea | t Gas Use (  | Therms/yr)  | Gas Sa     | avings  | Avg         | Leakage  |
|----------------|-----------|--------------|-------------|------------|---------|-------------|----------|
| Building ID    | Total     | Infiltration | Infil/Total | (Therm/yr) | (\$/yr) | Infil (cfm) | Red. (%) |
| Elem School TF | 40,224    | 2,389        | 6%          | 549        | \$319   | 1,296       | 17%      |
| Comm. College  | 32,095    | 3,402        | 11%         | 174        | \$105   | 1,730       | 3%       |
| Middle School  | 44,469    | 7,779        | 17%         | 905        | \$525   | 4,330       | 12%      |
| Small Office   |           | 684          |             | 39         | \$24    | 964         | 8%       |
| Univ Library   |           | 192          |             | 11         | \$6     | 249         | 6%       |
| Elem School PS | 26,563    | 2,387        | 9%          | 223        | \$129   | 1,453       | 10%      |
| Library/Office | 18,108    | 2,829        | 16%         | 107        | \$68    | 1,477       | 8%       |
| Minimum        |           |              | 6%          | 11         | \$6     | 249         | 3%       |
| Mean           |           |              | 12%         | 287        | \$168   | 1,643       | 9%       |
| Median         |           |              | 11%         | 174        | \$105   | 1,453       | 8%       |
| Maximum        |           |              | 17%         | 905        | \$525   | 4,330       | 17%      |

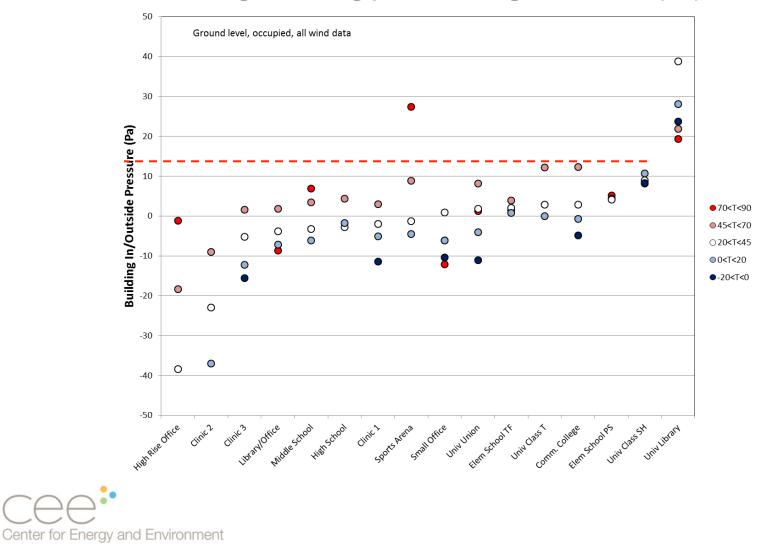


## Air Sealing Energy Savings

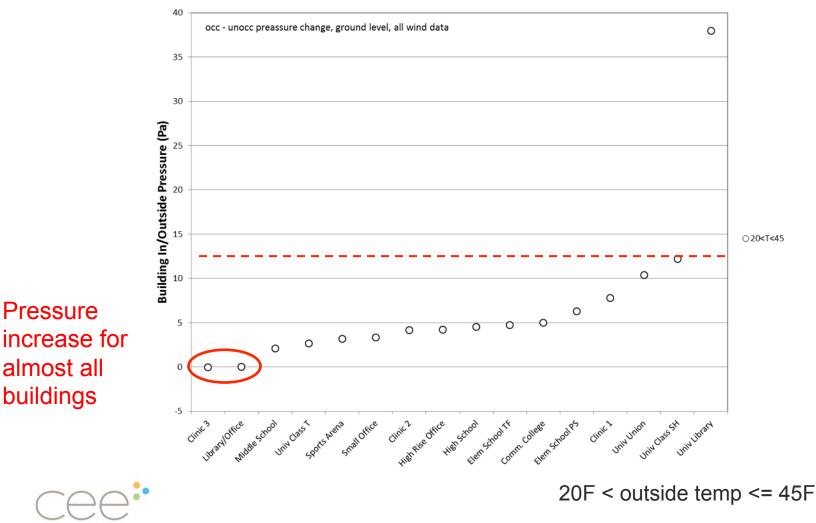



### Modeled Infiltration and Energy Savings

| -              | Gas Sa     | avings  | Electric | Savings | Total   | Leakage  |           | Payback |
|----------------|------------|---------|----------|---------|---------|----------|-----------|---------|
| Building ID    | (Therm/yr) | (\$/yr) | (kWh/yr) | (\$/yr) | (\$/yr) | Red. (%) | Cost (\$) | (years) |
| Elem School TF | 549        | \$319   | 1,034    | \$101   | \$419   | 17%      | \$18,550  | 44      |
| Comm. College  | 174        | \$105   | 232      | \$23    | \$127   | 3%       | \$17,845  | 140     |
| Middle School  | 905        | \$525   | 2,523    | \$246   | \$771   | 12%      | \$23,700  | 31      |
| Small Office   | 39         | \$24    | 18       | \$2     | \$26    | 8%       | \$4,768   | 182     |
| Univ Library   | 11         | \$6     | 79       | \$0     | \$6     | 6%       | \$15,918  | 2,872   |
| Elem School PS | 223        | \$129   | 487      | \$47    | \$177   | 10%      | \$26,700  | 151     |
| Library/Office | 107        | \$68    | -232     | -\$24   | \$44    | 8%       | \$1,152   | 26      |
| Minimum        | 11         | \$6     | -232     | -\$24   | \$6     | 3%       | \$1,152   | 26      |
| Mean           | 287        | \$168   | 592      | \$56    | \$224   | 9%       | \$15,519  | 492     |
| Median         | 174        | \$105   | 232      | \$23    | \$127   | 8%       | \$17,845  | 140     |
| Maximum        | 905        | \$525   | 2,523    | \$246   | \$771   | 17%      | \$26,700  | 2,872   |

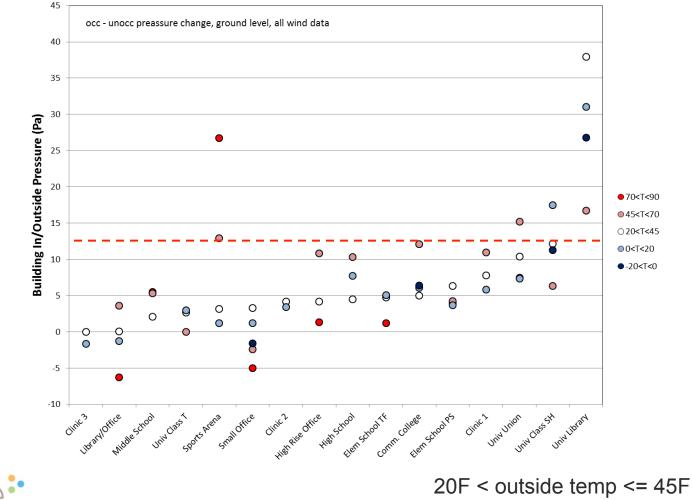

Able to seal "tight" buildings, but work was not cost effective






Center for Energy and Environment

#### Average building pressure at ground level (Pa)




Difference between occupied and unoccupied pressure (Pa)



Center for Energy and Environment

Difference between occupied and unoccupied pressure (Pa)



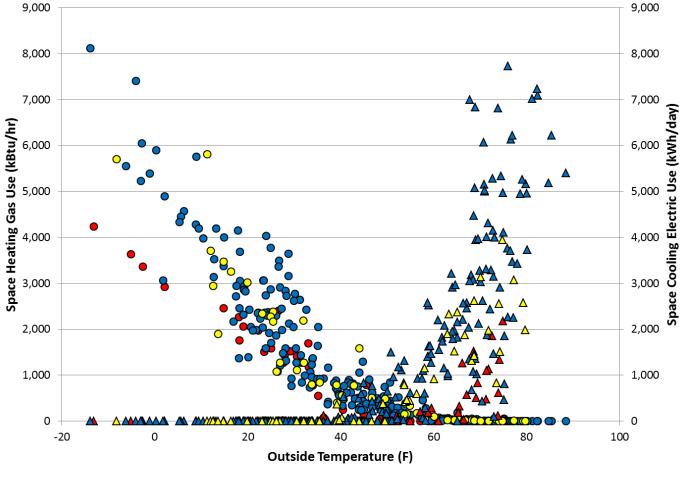


### **Computing Savings For Your Project**

- Can we divide cfm50 by 20 to get savings?
- It is not that simple for larger buildings
- HVAC pressurization effects savings
- Greater savings for taller buildings, open terrain, distance from neutral level, floor compartmentalization
- Internal heat gain = cooling more important
- Developing spreadsheets for savings calculations



### **Computing Savings For Your Project**


**Three Story Commercial Building** 

5

- Typical pressurization = 10% less
  6Pa = 35% less
  12.5Pa = 60% less
- 1 story = 40% less; story = 30% more; 10 story = 80% more
- Urban wind shielding = 35% less Open wind shielding = 70% more



### **Office Building Model: Heating & Cooling**



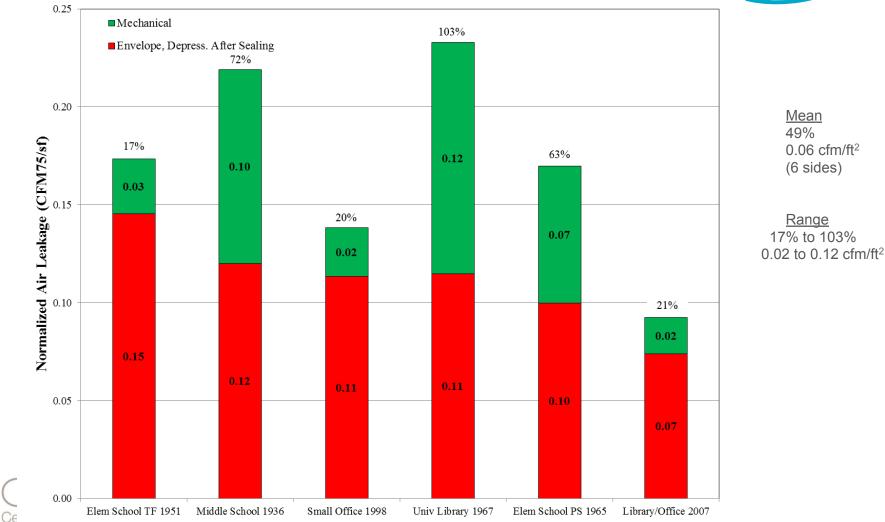
● Sunday ● Weekday ○ Saturday ▲ Sunday ▲ Weekday ▲ Saturday

Center for Energy and Environment

### **Mechanical System Leakage**

Part of building envelope when not operating








### **Mechanical System Leakage**

### Part of building envelope when not operating





Two most recently built (1998 and 2007) had low leakage

### Summary

- Tight buildings: 85% tighter than U.S. average & at least 25% below Army Corp standard – due to cold climate location?
- Sealing = 9% reduction, more reduction and less expensive for leakier buildings
- Contractor over-estimated sealing area
- Long paybacks for air sealing work
- Including mechanical systems increased leakage by 17 to 103% (0.02 to 0.12 cfm/ft<sup>2</sup>)
- HVAC systems tend to pressurize buildings. Not as great as typical design practice



### When Is Air Sealing Worthwhile?

- You can see out the envelope gaps & leak is accessible
- Taller (5+ stories) in open terrain
- Reported problem that is likely to be caused by air leakage
- You live in portion of US that hasn't had to worry about infiltration

Other Opportunities

- Older/leaky dampers (cost?)
- Building pressure control



# Thank you!

Dave Bohac dbohac@mncee.org

