Saving Energy in Existing Multifamily Buildings

Duluth Energy Design Conference February, 2015

Corrie Bastian Center for Energy and Environment

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

- Who is CEE
- Perspective: Understanding the industry
- Energy use in multifamily buildings
- Retrofit highlights
 - Energy impact
 - Marketability
 - Ensuring success: I, O & M best practices

The Center for Energy and Environment (CEE) is a nonprofit organization that promotes energy efficiency to strengthen the economy while improving the environment

- We conduct research and develop programs so that:
 - Businesses operate more efficiently and profitably;
 - Government agencies and nonprofits spend less on facilities and functions;
 - Utilities achieve their energy-efficiency goals at least-cost; and
 - Households save money and improve comfort.

What we do

- Energy Program Design and Delivery
- Engineering Services
- Innovation Exchange
 - Research
 - Education and Outreach
- Sound Insulation Program
- Public Policy
- Lending Center

CEE multifamily experience

- Facility assessments of over 2,000 buildings in Minnesota
- Completed over 20 research projects

Current multifamily research projects

- Condensing boiler optimization
- Multifamily ventilation optimization

- Demand Controller recirculation loop controls
- Multifamily aerosol envelope air sealing
- Indoor pool optimization

All funded through the MN Department of Commerce's Conservation Applied Research and Development grant program.

The Conservation Applied Research and Development (CARD) grant program is funded by MN ratepayers, and administered by the Minnesota Department of Commerce, Division of Energy Resources

Current multifamily energy efficiency programs

- Energy Star multifamily 3rd party verifier
- One Stop Efficiency Shop lighting program with Xcel Energy
- Multifamily Energy Savings program with MN Energy Resources

UNDERSTANDING MULTIFAMILY BUILDINGS

What we know about multifamily buildings

"Multifamily buildings are a tough energy efficiency nut to crack"

- Why?
 - "Split incentive" / diverging interests between resident and owner
 - "Lots of players in the orchestra"
 - Perception that technical challenges outweigh financial benefits

Market research on multifamily building owners and managers reveals perceptions of energy efficiency

- "Expensive"
- "Complex maintenance and upkeep"
- "Realized savings are questionable"
- "Improved comfort is a big benefit"
- "Has to be durable"
- "Trustworthy energy efficiency advice is needed"

MN multifamily buildings are Relatively "young and fit" buildings

- 78% "Post-War" and newer stock
- Natural gas = common heating fuel (~66%)
- Central hydronic = common heat system (83%)

SOURCE: Minnesota Multifamily Rental Characterization Study, Energy Center of Wisconsin and Franklin Energy, 2013; sampled 120 bldgs in MN (78 in Twin Cities, 66 Greater MN)

And yet outliers in (almost) every category

SOURCE: Minnesota Multifamily Rental Characterization Study, Energy Center of Wisconsin and Franklin Energy, 2013; sampled 120 bldgs in MN (78 in Twin Cities, 66 Greater MN)

Water and space heating costs dominate

SOURCE: Minnesota Multifamily Rental Characterization Study, Energy Center of Wisconsin and Franklin Energy, 2013; sampled 120 bldgs in MN (78 in Twin Cities, 66 Greater MN)

And yet they are a small piece of the expense pie

Source: 2013 MN Multi Housing Association Expense survey. 388 multifamily properties surveyed

i.e. Energy efficiency marketability goes well beyond payback

- paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- Is easy to implement
- Makes everyone look smart

MARKETABLE ENERGY EFFICIENCY STRATEGIES FOR MN MULTIFAMILY

Good opportunities for energy savings – beyond "the laundry list"

- Optimizing existing condensing boilers
- Building ventilation modifications
- Demand-based hot water recirculation loop controls
- Aerosol envelope air sealing

 Projects discussed are supported in part by a grant from the Minnesota Department of Commerce, Division of Energy Resources through a Conservation Applied Research and Development (CARD) program

Optimizing condensing boilers

Achieving rated efficiency (>90% efficiency)

Return water temperature

Pg. 23

Benefits

- 4-10% of gained efficiency
- Eliminate short-cycling
- Getting what you paid "extra" for

The key: driving down return water temperature

- Maximize heat transfer at heating elements
- Send lower temp water out to the building
- Make sure boiler output matches demand
- Make sure your piping isn't dumping supply water into return
- Make sure domestic hot water is not integrated with space heating boiler

Excess air can dictate boiler efficiency

Measured as % Oxygen in flue gas

Image source: industrialheating.com

Condensing boiler sensitivity to excess air

- Controlling excess air very important
 - Excess air reduces concentration of water vapor
 - Dewpoint decreases

Oxygen levels in flue gas

Boiler 2

Н

testo310		V5. 2	42813307/1
V5.2	42813307/1	Company_	
Company	· · · · · · · · · · · · · · · · · · ·	Address_	
Address		Phone	
Phone	· · · · ·	11/20/2014	12:28:07 pm
11/20/2014	12:57:52 pm	Fuel	Natural gas
Fuel CO2max	Natural gas 11,7%	CO2max	11.7%
4. 3% 99ppm 155. 8° F 88. 5% 0ppm 65. 1° F i nH20 23. 6% 	02 CO Fluegas Temp EFF Ambient CO Ambient Temp Draft Excess air Pressure Q 3 CO2Cours Undiluted CO	4.4% 92ppm 134.2°F 89.0% 0ppm 65.1°F inH20 23.6% inH20 % 9.24% 115ppm Smoke no.	02 CO Fluegas Temp EFF Ambient CO Ambient Temp Draft Excess air Pressure CO2 Undiluted CO
Smoke no.		Smoke no.∅	-
Smoke no.Ø	÷	HCT	° F
нст	*F	For questio	ns call
For question	ns call		

Boiler

testo310

Table 4: Recommended Combustion Levels

	Natural Gas All Models	Propane Solo 60/175/250	Propane Solo 399
O2 Min.	2.30%	2.70%	3.70%
O2 Max.	5.30%	4.70%	5.20%
CO2 Min.	8.80%	10.70%	10.00%
CO2 Max.	10.50%	12.00%	11.00%
CO Max.	100 ppm	100 ppm	100 ppm

Heating elements: You're stuck with them

- It isn't cost effective to add more
- Dirty or blocked radiation affects heat transfer

Control boilers for lowest possible output

- Optimized outdoor reset
- Finding the lowest max output temp for the building
- Sequencing and staging for optimal efficiency

Control the boiler so it doesn't exceed demand

Outdoor reset lowers boiler water temperature

As outdoor temps get warmer, the building heating load gets smaller and the boiler water temperature can be lowered.

14 unit building: 9.5% space heating savings (no cost) Reduced building over-heating

At replacement: Identify boiler control limitations

 This boiler control's non-adjustable minimum outside temp of 0°F is not ideal for MN

Boiler sequence and firing stage controls: matching output to load for best efficiency

Lower output firing stages have increased thermal efficiency

Image source: Lochinvar.com

Image source: lochinvar.com

Sequencing boilers: mixed efficiency

41 unit building: 11% space heating savings 3 year payback Reduced short-cycling

Sequencing/staging: All firing on at once because they can't talk to each other

32 unit building:6% space heating savings5 year paybackReduced short-cycling

Little difference between boiler supply and return temperatures indicates potential for improvement

• Another testament to keeping a daily boiler log!

1- Adjust reset temps as low as possible 2- VFD pump control optimizes heat transfer as zones open and close

-		Day Tim	e Outside Temp	e System Temp	Main Supply Temp	Outlet Temp	Inlet Temp	Return Temp	Boiler Pressure Reading	Capacity %	Comments and Initials
		1 4:16	45	the second se	115			102	9/18		Reised Pressure to 18psi
_	2	A	m	1490	1420			138°	14		JAH from 86-84 Allen
C	3	12:00	3 33°	132°	122°			118°	9/18		JAH Reised pressore to
11	4	11:47	38°	120°	116			108°	10/18		JAH Raised to 18 psi
	5	1:50	38°	120°	1150			1090	11/18		JAH " n
	6	7:10	32°	1198	1160			1090	10/17		KiR
	7	11:59	400	120°	1140			108°	6/19		Att Reised agen to 90
	8	8:33	320	132	130"			1210	14/19		
	9	10:00	32°	130	128°			120°	12/19		JAH Raised preserve to 1 JAH 1005ing 2-7 galadag.
	10	10:35	33°	133"	1310			1190	11/18		Pt San a
	11	in	2.70	10.0	1 0				1110		JAH Laised pressure to

Variable speed pumps (VFDs, VSDs)

- Reduce the pump flow during part-load (when zones close)
 - Allows for lowered return water temperature—more potential boiler condensing conditions
 - Electricity savings

Boiler room piping: address at replacement

Not ideal: Adjacent boilers warm return water

Domestic hot water can dictate return water temps

 Traditional coil-in tank requires high boiler temperatures, limiting boiler efficiency during DHW call

Summary: getting condensing boilers to condense!

- Proper oxygen levels in flue gas contribute to optimal condensing conditions
- Maintaining aggressive control settings prolongs condensing capabilities
- VFD pump controls reduce pump speeds at part loads to optimize heat transfer
- Boiler room piping can dictate return water temps
- Indirect (sidearm) water heaters will limit DHW efficiency

Optimizing ventilation systems

Optimizing ventilation systems

ISSUES

- High fan power use
- Excessive ventilation airflow
- Occupant complaints of drafts, odors
- Duct leakage
- Clogging and other flow balancing problems
- Difficult/costly to measure and quantify energy savings associated with retrofitting

Central ventilation systems

Central apartment exhaust

Central corridor/make up air systems

Corridor ventilation improvements

 Reduce fan speed to provide code required ventilation flow

ISSUES

- Design flow rates were much higher than current required flow
- Faulty controls/sensors
- Flow rates not verified

Corridor ventilation retrofit in Minneapolis

Project: Re-sheave fan for lower flow

- 4,700cfm reduced
- 9,611 therms saved
- 7,244 kWh saved
- \$6,899 annual savings
- <6 month payback</p>

Central exhaust improvements

- Reduce & balance flow
- Seal inlets, curbs & ducts
- Install high efficiency fans

ISSUES

- Design flow rates were much higher than current required flow
- Unbalanced flow
- Flows difficult to verify and seldom measured

Central exhaust retrofit in Minneapolis

Project:

1- Replace operable balancing louvers with fixed orifices

2- Replace belt drive exhaust fans with high-efficiency type

- 2,299 cfm reduced
- 4,706 therms saved
- 21,979 kWh saved
- \$5,037 annual savings
- 7 year payback
- Reduced odors and noise

Installing fixed balancing orifices

Replace balancing devices prone to clogging or tampering

Seal duct leakage at inlet

Install fixed orifice sized for correct flow, sealed to ceiling

Replacing exhaust fans

- 1. Seal leakage below fans at curb
- 2. Replace with EC fans with adjustable speed controls
- 3. Verify flow is correct

Trash chutes can affect ventilation performance

- Trash rooms may exhaust too much air
- Lack of air sealing can cause odor transfer
- Ventilation flow may be increased to compensate

© 2014 Center for Energy and Environment

Addressing the trash chute

- Keep trash room doors closed
- Seal trash room off from rest of building
- If no door, seal chute to compactor/trash bin
- Reduce trash room exhaust fan flow rate
- Reduce chute cap opening

Stay tuned

- Ventilation assessment manual this spring
 - Guide for assessment and retrofitting central supply and exhaust systems (and trash chutes)
 - Audience: HVAC contractors and energy consultants
- Project report this summer
 - Energy savings opportunities found in 18 buildings
 - Retrofit outcomes on 6 buildings

Controlling hot water recirculation loops

Hot water recirculation loops

Image source: HMG, Inc

DHW energy losses

Image source: HMG, Inc. Multifamily Central Domestic Hot Water Distribution systems. 2013

Enovative's Demand Controller

- Control stops pump when there is no building demand or the recirculation loop temp is above 100F
- Pump run time reduced from 24/7 to average 14 mins/day (ARIES Collaborative/Building America study in 2014)

A good investment...

- Has aggressive energy paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- Is easy to implement
- Makes everyone look smart

Variables that affect predicted savings

- Tank efficiency
- Insulation on recirc loop pipes
- Seasonal consumption
- Incoming cold water temp
- Building consumption habits
- "Crossover"

DHW Savings Range: 5-15% Average: 9%

Rochester installation

- 3-story
- 39 unit building
- Built in 1955
- Failed water heaters
- Shower heads and faucet aerators installed along with building assessment

10% DHW savings from Demand Controller Payback = 4 years 540 therms saved, 14 therms / unit

Aerosol envelope air sealing

Concept:

- Pressurize apartment unit
- Spray air sealing fog
 Sealant particles build up on gaps as they exit the envelope

Multifamily compartmentalization

Creating an interior air barrier around each unit

- Reduced stack effect
- Reduced noise transfer
- Reduced odor transfer/improved IAQ
- Increased comfort
- Increased energy efficiency

Nuts and bolts

PREP WORK

- Horizontal surfaces covered
- Windows, exterior doors covered
- Finished floor covered (ideal before flooring is installed)
- Door handles covered
- Plumbing fixtures covered
- Ceiling fans covered
- Radiators covered
- Sprinkler head openings covered
- Remove outlet/switch plates

Nuts and bolts

SET UP/SEAL

- Blower door and nozzles
- 100Pa pressurization
- ~ 90% RH maintained
 CLEAN UP
- Open windows, purge
- Remove masking

Preliminary results

- Air tightness result: 114 to 25 CFM50 total unit leakage (8 units sealed)
- Averaged 0.45 ACH50
- 78% to 95% tighter than the new code requirement of 3.0 ACH50
- 12-13 times tighter than Energy Star requirement for multifamily

Leakage reduced over injection period

Sealed penetrations

Sealed penetrations

Identifying the opportunity

IDEAL CANDIDATES

- Moderate rehabs "floors and cabinets"
- New construction

NOT IDEAL

- Where carpet is installed
- If occupied

• Air sealing at lower cost?

Aerosol

- Prep
- Sealing process
- Simultaneous air leakage testing ensures results

Vs.

Manual air sealing

- i.e. caulking/foaming
- Architectural specification
- Labor
- Air leakage test

=> Uncertain results

Marketable?

BENEFITS

- Reduced mid and high range noise transfer
- Reduced odor transfer
- Improved comfort

A good investment...

- Has aggressive energy paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- Is easy to implement
- Makes everyone look smart
- Simultaneous air leakage testing ensures results
- Expedited process, labor savings potential
 CONSIDERATONS
- Cost
- Not a solution for large air leak gaps
- Rehab or new construction only
- Balanced ventilation is crucial

Stay tuned for more info (Jan 2016)

Study will look at :

- 6 test sites; Rehabs and new construction in MN
- Enabling commercialization of process
- Air leakage reductions
- Sound attenuation
- ID leak site locations with fluorescent dye/black light photography
- Evaluation of time and materials required

More info CEE programs and research: mncee.org

Corrie Bastian cbastian@mncee.org 612.244.2425

