Upgrading Below-Grade Spaces: Challenges & Opportunities

Energy Design Conference February 27, 2013

Patrick H. Huelman
Cold Climate Housing Coordinator
University of Minnesota Extension

- Prologue: Brief Introduction to Building America
- Act 1: Upgrade Below Grade
- Act 2: Challenges of Basement Insulation
 - Moisture Management Primer
- Act 3: Foundation Insulation for Existing Homes
 - Managing Risks
 - Best Practices
 - New Approaches

Building Technologies Program

Building America National Renewable Energy Lab

Introduction to Building America

- Focus is to reduce energy use by 50% in new houses and 30% in existing residential buildings.
- Promote building science solutions using a systems engineering and integrated design approach.
- "Do no harm" => we must ensure that safety, health, and durability are maintained or improved.
- Accelerate the adoption of high-performance technologies.

Industry Research Teams

 Exploring the next generation of high performance homes for cold climates, using

- building science as our compass
- research as our guide
- Taking a total systems approach
 - House (physical) system
 - Construction delivery system
 - Market (consumer-user) system

- Research and deployment of a whole-house, systems engineered, integrated design approach to select the least cost and highest value features including:
 - Climate-specific designs
 - Highly-efficient walls, foundations, roofs
 - Super-efficient windows & doors
 - Passive solar space & water heating
 - State-of-the-art heating & cooling systems
 - Advanced hot water, appliances, lighting
 - Solar thermal and solar electric systems
 - Moisture resistant construction
 - Healthy indoor air

- Research Team Lead: University of Minnesota
 - Cold Climate Housing Program Pat Huelman
 - Center for Sustainable Building Research John Carmody
- Research Team Partners
 - Center for Energy and Environment David Bohac
 - Building Knowledge, Inc. Ed VonThoma
 - Energy Center of Wisconsin Dan Cautley

University Research Partners

- Advanced Building Systems Group (BBE)
- Initiative for Sustainable Enterprise (IonE/IREE)
- Energy Systems Design Program (BBE)
- Mechanical Engineering (CSE)
- Clean Energy Resource Teams (CFANS)
- Natural Resource Research Institute (UM-D)

University Support

- College of Food, Agricultural & Natural Resource Sciences
- Initiative for Renewable Energy and Environment
- University of Minnesota Extension

External Research Partners

- Building Green
- Conservation Technologies
- Hunt Utilities Group
- McGregor Pearce
- Verified Green
- Wagner Zaun Architecture

Building Enclosure

- CertainTeed
- DuPont Building Innovations
- Johns Manville
- BASF
- Dow

Windows and Fenestration

- Andersen Corporation
- Cardinal Corporation
- Marvin Windows and Doors

Mechanical Systems

- AIM
- A.O. Smith
- Panasonic
- RenewAire
- Venmar Ventilation

Builders/Remodelers/Suppliers

- Christian Builders
- JET Construction & Remodeling
- Lumber Dealers Supply
- Nor-Son Construction
- Northway Construction
- TDS Custom Construction
- Thompson Homes
- Wausau Supply Company
- Cobblestone Homes
- Amaris Custom Homes
- Cocoon Home Performance Solutions
- Lambert Lumber

Professional/Community

- MN Office of Energy Security
- NARI

- Current Research Portfolio
 - Foundation Insulation Systems
 - Full-scale testing of interior systems at the CRRF
 - Exploring innovative retrofit options for masonry
 - Project Overcoat
 - Exterior insulation systems focused on airtightness of 1-1/2 story roof applications
 - Integrated Space & Water Heating Systems
 - In-situ monitoring in WX homes

- Future Research Plans
 - Integrated Space & Water Heating
 - Laboratory optimization
 - Project Overcoat
 - Cost reduction (materials & labor)
 - Foundation Insulation for Existing Homes
 - Testing insulation system performance at the CRRF
 - Demonstrate "excavationless" method for exterior retrofit
 - Simplified Test Method for Combustion Safety

Act 1. Upgrading Below Grade

- Basement Renovation Touches It All!
 - Combustion safety
 - Foundation moisture
 - Radon (& other soil gases)
 - Biologicals (mold, dust mites, etc.)
 - Garage gases (if attached)
- And front and center are uncontrolled...
 - negative pressures in basements
 - below grade moisture transport

Big, Bad, Boogie Men in the Basement

- Carpet on the slab
- Insulating the walls (from the interior)
- Egress windows
- Furnace change-out
- Ductwork changes
 - drywalling the ceiling
 - rim (or extended) joists to the garage
- Hot tub or sauna

Basement Moisture Challenge

- Foundations get wet from four sides by all four moisture transport mechanisms.
 - bulk water, capillarity, diffusion, and air flow
- Foundations dry primarily to the inside.
 - generally by diffusion only
- So you must keep it dry from all four sides
 - or come up with an approach that promotes inward drying better than outward wetting.

Basement Moisture Challenge

- Below Grade Moisture Transport is Complex
 - Liquid
 - gravity
 - capillarity
 - Vapor
 - air leakage
 - diffusion

Below Grade Moisture Sources

Basement Remodeling – "Easy Button"

- Just say no to ...
 - reverse grading, landscape irrigation, ponding, etc.
 - carpet on cold slabs
 - air-permeable interior wall insulation
 - chimney-vented combustion
- Just say yes to ...
 - basement ventilation
 - aggressive humidity control (dehumidification or AC)
 - radon mitigation
 - paperless drywall (off the floor at least 1")

Act 2: Challenges of Basement Insulation

- Arguably the most challenging component of the building enclosure!
 - The physics is simple, but demanding
 - It starts out damp and cold and goes downhill from there, especially with interior insulation
 - Occupancy and expectations have changed
 - Basement use and finishing has increased dramatically.
 - A road less traveled
 - There is a serious lack of good and useful below-grade hygrothermal models and experimental data is limited.

So What is the Problem?

- Should we insulate basement walls of existing homes?
 - Energy => certainly
 - Moisture => probably
 - Indoor Air Quality => with caution
- How should we insulate basement walls?
 - It is a system.
 - It depends!

Basement Insulation: Benefits

Figure 1-2: Benefits of Foundation Insulation and Other Design Improvements

Source: Oak Ridge National Laboratory

Basement Insulation: Opportunities

- Foundation heat loss can be significant in existing buildings.
- While below grade temperature differences might be smaller,
 - the surface area can be fairly large
 - the above grade portion is substantial, especially in older homes.

There are a lot of uninsulated

Basement Insulation: Obstacles

- Most existing foundations do not have waterproofing or capillary break at the footing.
- When you insulate the interior
 - the top of the wall is extremely cold in the winter and
 - the bottom can be below the dew point in the summer.
- The foundation wall must dry inward; interior insulation generally limits the drying potential.

Basement Insulation: Heat Transfer

- Below grade heat loss is always out
 - Winter heat loss is highest at the top and gets progressively less as depth increases.
 - Summer heat loss is higher at the bottom.
 - colder soil conditions & footing connection
- However, the above grade portion has similar issues to other above grade construction.
 - But not identical, due to vertical coupling.

igure 2-1: Concrete Masonry Basement Wall

Source: Oak Ridge National Laboratory

Basement Insulation: Vapor Flow

- Below grade vapor flow is almost always inward.
- However, the above grade portion has similar issues to other above grade construction.
 - above grade can be outward in winter and inward in the summer
 - vertical coupling is huge, especially with concrete masonry

Figure 2-1: Concrete Masonry Basement Wall

Source: Oak Ridge National Laboratory

Basement Insulation: Condensation

- Condensation Potential
 - Without insulation
 - condensation is limited.
 - With exterior insulation
 - condensation is virtually nil.
 - With interior insulation …
 - condensation may occur at the top in the winter and
 - condensation may occur at the bottom in the summer.

Basement Insulation: Drying

- Drying Potential
 - Without insulation
 - heat and moisture move freely.
 - With exterior insulation
 - drying to the inside is strong.
 - With interior insulation
 - outward warming is slowed and interior drying is severely limited.

Basement Insulation: Current Wisdom

- Exterior insulation is almost always preferable.
- If interior insulation is used,
 - must have a very dry foundation
 - quality dampproofing in very dry, free-draining soils
 - waterproofing in moderate soils
 - waterproofing and drainage in tight, wet soils
 - must have a capillary break
 - must have an interior air barrier
 - must use basement dehumidification.

A Reality Check

- A Holistic Approach to Walls and Floors
 - Assessment of Site Conditions
 - Assessment of Basement Conditions
 - Assessment of Critical Foundation Details
 - Assessment of Interior Conditions
 - Identify Moisture Potential and Risk
 - Select Appropriate Wall and Floor System

- Key Assessment Tools
 - Blower door; infrared camera; thermometer
 - Moisture meter & hygrometer or psychrometer
 - Testing: radon, vapor emissions, mold, etc.
 - Digital pressure gages
 - Including sub-slab pressure mapping
 - Fiber optic camera / borescope
 - Core drilling

- Assessment of Site Conditions
 - Common warning signs
 - tight soils
 - high water table
 - poor site drainage
 - Other considerations
 - roof drainage
 - landscaping plans
 - irrigation system

- Assessment of Basement Conditions
 - Distance of basement floor to water table
 - Exterior drainage
 - type of backfill
 - exterior drainage system
 - slope and drainage
 - gutters, downspouts and extensions
 - Interior drainage
 - Foundation exposure above grade

- Assessment of Critical Foundation Details
 - Type of foundation
 - block vs. poured concrete
 - Type of drainage system
 - drainage level
 - Step footing location
 - block vs. poured concrete
 - Underslab conditions
 - horizontal drainage
 - Presence and location of capillary breaks

- Assessment of Interior Conditions
 - Interior condensation
 - slab/foundation wall temperatures
 - humidity control
 - Ventilation (for winter moisture control)
 - type of ventilation
 - quantity of ventilation available
 - Dehumidification (for summer moisture control)
 - air-conditioning (including set-up and use)
 - dedicated dehumidification

- Identify Moisture Potential => Very High Risk
 - Tight soils or high water table
 - Block walls
 - with step down footings below drainage
 - Uncertain dampproofing / waterproofing
 - Poor indoor humidity control

- Identify Moisture Potential => High Risk
 - Generally dry soils
 - Block walls
 - With no step footings below drainage
 - Concrete
 - with step down footings below drainage
 - Uncertain underslab drainage
 - Uncertain capillary break

- Identify Moisture Potential => Moderate Risk
 - Very dry, free-draining soils
 - or verifable dampproofing and drainage
 - Concrete walls
 - no step footings
 - Good underslab drainage layer

- Identify Moisture Potential => Low Risk
 - Extremely dry soils
 - or verifiable waterproofing, drainage, and capillary break
 - Concrete walls
 - no step footings
 - Good underslab drainage layer with vapor retarder
 - Good indoor humidity control

Act 3: Foundation Insulation for Existing Homes

- Challenges of adding interior insulation on existing foundation walls.
 - We have limited experimental data sets.
 - Existing modeling tools are crude and poorly validated.
 - Existing material properties and boundary conditions are highly variable and unknown, so we must focus on ...
 - developing a liquid water management approach,
 - balancing R-value and vapor diffusion characteristics,
 - evaluating safe moisture storage,
 - identifying risk and risk tolerance.

Perception of Risk

- Which surfaces or layers can be:
 - Saturated?
 - Frozen?
 - Moldy?

Foundation Insulation (high risk)

- Alternatives for Existing Basements
 - Frame wall with batt insulation system
 - Vapor retarder needed on both sides
 - Interior air barrier is critical
 - Very limited drying potential if wetting occurs
 - Moisture accumulation on foundation wall is almost certain at typical insulation levels

Foundation Insulation (very low risk)

- Alternatives for Existing Basements
 - Dig to the footings,
 - Install proper perimeter drainage,
 - Add exterior waterproofing,
 - Install thermal insulation,
 - ideally covering the rim joist, as well
 - Install protective coating
 - including 6" to 18" below grade
 - Backfill with free-draining material and impermeable cap.

Foundation Insulation (very low risk)

Figure 2-3: Components of Basement Drainage and Waterproofing System

Source: Oak Ridge National Laboratory

Foundation Insulation (very low risk)

- Alternatives for Existing Basements
 - Interior finish without insulation or carpet
 - empty stud wall, paperless drywall, latex paint
 - aggressive interior humidity control

(low risk)

- Alternatives for Existing Basements
 - Barrier system with interior finishes
 - sealed interior liner with concealed drainage
 - and possibly active drying
 - use semi-permeable continuous insulation and appropriate interior finishes
 - must be very cautious of top condition
 - recommended to insert capillary break between foundation wall and sill plate

(low risk)

Source: Building Science Corporation

(low risk)

Source: Building Science Corporation

(low to moderate risk)

- Alternatives for Existing Basements
 - Semi-vapor permeable, air impermeable insulation with permeable finish
 - low R-value, semi-permeable, airtight foam
 - aggressive interior humidity control

(low to moderate risk)

Figure 2-7: Basement Interior Insulation with EPS or XPS Semi-permeable Insulation on Inside Wall

Source: Oak Ridge National Laboratory

(low to moderate risk)

Figure 2-15: Basement Wall with Interior Insulation

(low to moderate risk)

Source: Building Science Corporation

Foundation Insulation (??? risk)

- Alternatives for Existing Basements
 - Hybrid or split insulation system
 - top and bottom could have different insulation strategies (r-value, permeability, etc.)
 - top could be on outside and bottom on inside

Foundation Insulation (??? risk)

- Alternatives for Existing Basements
 - Partial exterior insulation systems
 - Partial depth
 - With or without skirt
 - Current cautions
 - Material choices
 - Moisture impacts

Foundation Insulation for Existing Homes

- Cautionary Note: If a Basement Floods ...
 - Floor coverings must be removed to facilitate clean-up and improve drying.
 - Interior insulation systems must be fully removed because they are contaminated and retard drying.
 - From field experience, exterior foam plastic insulation systems appear to recover with little deterioration in performance.

Building America: 2011-12 Projects Retrofit Interior Options

- In 2011, we explored 4 configurations for interior insulation.
 - 4 insulation levels in 3 climate locations
 - This initial investigation was limited to the use of existing below grade energy models and minimal hygrothermal evaluation.
- In 2012, full-scale, in-situ testing began at the Cloquet Residential Research Facility.
 - 3 interior options and 1 exterior option

Building America: 2011-12 Projects Retrofit Exterior Options

- Exploration of methods to insulate the exterior of existing homes.
 - Identify approaches that could be used
 - Investigate means and methods
 - Determine how many homes would be conducive to each approach
- Exploration of innovative methods to insulate hollow concrete masonry block foundations.
 - Using existing models for energy/hygrothermal benefits

The Ins and Outs of the Outside Approach

- Exterior foundation insulation confers multiple hygrothermal benefits
- Missing moisture control materials can be added, or their importance is diminished because the wall is warm and can dry readily to the interior.
- Typical exterior approaches are costly, destructive to the landscape, and disruptive to homeowners.
- A cost-competitive, minimally-invasive technique is needed!

An Innovative Retrofit Exterior Option

- Possible Approaches
 - Full depth insulation
 - with waterproofing & drainage
 - without waterproofing
 - Partial depth
 - with waterproofing
 - without waterproofing
 - Upper foundation
 - vertical only
 - vertical with horizontal skirt

An Innovative Retrofit Exterior Option

- Means and Methods
 - Equipment and techniques
 - narrow trench
 - vibratory knife
 - air or water blade
 - Evaluate insulation formulations
 - installation
 - properties
 - durability

Technical Approach

- To find an "excavationless" exterior foundation insulation upgrade that is cost-competitive with current methods and involves little impact to existing landscape and site features.
 - Literature review to establish the building science case for the advantages of exterior foundation insulation vs. interior insulation.
 - Survey of five typical Twin Cities neighborhoods to categorize and quantify typical obstructions.

Technical Approach

- Identify potential technologies, costs, & savings
 - Web-based search to identify available means and materials having promise for this application.
 - Interviews with industry representatives from down selected products and technologies to establish their suitability, along with cost.
 - Analysis of two exterior, full-excavation insulation upgrades to establish a base case for costs.
 - BEOpt analysis to establish energy savings potential.

Recommended Guidance

- Cut a narrow slot trench using air/hydro-vac.
- Backfill with one of three potential materials:
 - 4" pourable polyurethane (R-26)
 - 6" cellular concrete (R-9 to R-11)
 - 6" perlite aggregate concrete (R-9 to R-11)
- Above-grade foundation and rim techniques are under consideration.
 - rigid insulation application is one possibility.
- Potential for moisture mitigation
 - drape waterproofing membranes into the trench prior to installation or backfill.
 - for cementitious or foam materials, admixtures can make them more hygrophobic.

Cost Comparison Table *

Product	Insulation Type	Total R- value (h ft² °F/Btu)	Material cost	Labor cost	Excavation technology	Excavation cost	Total cost
Rigid mineral wool	Rigid board	10 (2.38" thick)	\$689	\$3198	Traditional power shovel	\$2920	\$6807
Extruded polystyrene	Rigid board	10 (2" thick)	\$630	\$3198	Traditional power shovel	\$2920	\$6748
Expanded polystyrene	Rigid board	8 (2" thick)	\$336	\$3198	Traditional power shovel	\$2920	\$6454
Cellular concrete	Cast in place	9 (6" thick)	\$3000	included	Hydro-vac	\$2600	\$5600
Perlite Concrete	Cast in place	11 (6" thick)	\$3529	included	Hydro-vac	\$2600	\$6129
Polyurethane foam	Cast in place	26 (4" thick)	\$3360	included	Hydro- <u>vac</u>	\$2000	\$5360

^{*} Cost does not include landscaping remediation, which will likely be higher for "traditional" methods

- Survey selected neighborhoods to evaluate constructability issues
- House constraints
 - steps, stoops & porches
 - attached garage
 - sidewalks & landscaping
 - cantilevers
- Access issues
 - equipment limitations

"Excavationless" Pros

- Exterior insulation can be forgiving of existing defects.
- Vacuum excavation methods reduce landscape impact.
- Many landscape features (walks, stoops, decks, etc.)
 can remain in place with vacuum excavation.
- Process is quick
 - estimated at 2 to 3 days for a simple home.
- Pourable insulation materials can be made relatively waterproof, potentially reducing bulk water intrusion.
- Cost competitive with, and likely cheaper than, current methods of exterior insulation upgrades.

"Excavationless" Cons

- Method does not address moisture loading from sources such as capillarity from the footing or through the slab.
- More expensive than typical interior insulation methods
 - though most of these increase risk of moisture problems.
- Long-term thermal properties of materials are unknown
 - potential for moisture accumulation within pore spaces may cause thermal degradation.
- Large obstructions (patio slabs, sidewalks) may need to be sawcut to the trench width or removed and replaced.
- Extent of waterproofing ability, and durability of that solution are not well-characterized.

Market Readiness

- Foundation insulation has a significant impact on energy
 - and perhaps more importantly comfort.
- Exterior insulation confers many hygrothermal benefits
 - compared to typical interior approaches.
- Homeowners who understand these benefits currently choose exterior insulation upgrades
 - despite the inconvenience, cost, and landscape damage.
- Technologies evaluated are in current use in other sectors.
- Estimates indicate the method is cost competitive
 - with current exterior insulation upgrade methods and
 - replacement of landscape features was not included.

Building America Resources

- Excavationless Exterior Foundation Insulation
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/excavationless exterior found.pdf
- Hybrid Foundation Insulation Retrofit
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/measure guide hybrid found.pdf
- High R-Value Foundations
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/high-r foundations report.pdf
- Basement Insulation Guide
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/measure guide basement insul.pdf%20

World Class Research...

87 | Building America eere.energy.gov

Upgrading Below Grade Spaces: Challenges and Opportunities

Questions?

- Contact Information
 - Patrick H. Huelman
 - 203 Kaufert Lab; 2004 Folwell Ave.
 - St. Paul, MN 55108
 - **-** 612-624-1286
 - phuelman@umn.edu

